An intracellular (ATP + Mg2+)-dependent calcium pump within the N1E-115 neuronal cell line.
نویسندگان
چکیده
An intracellular (ATP + Mg2+)-dependent Ca2+ pumping mechanism has been identified and characterized within the cultured clonal neuroblastoma cell line N1E-115. Using cell suspensions treated with 0.005% saponin which selectively permeabilizes the plasma membrane in 95-98% of the cells, it was possible to show clearly that the intracellular Ca2+ pump mechanism is of non-plasma membrane origin and therefore can be compared directly with the Ca2+ pump characterized in detail in synaptosomal membrane vesicles (Gill, D. L., Grollman, E. F., and Kohn, L. D. (1981) J. Biol. Chem. 256, 184-192; Gill, D. L., Chueh, S. H., and Whitlow, C. L. (1984) J. Biol. Chem. 259, 10807-10813) which was proven by flux reversal studies to be derived from the neural plasma membrane (Gill, D. L. (1982) J. Biol. Chem. 257, 10986-10990). The intracellular Ca2+ pump in N1E-115 cells is distinct from mitochondrial Ca2+ accumulation and is increased up to 8-fold higher as cells reach confluency. In similarity to the neural plasma membrane pump, the intracellular Ca2+ pump within N1E-115 cells has high affinity for Ca2+ (Km = 0.28 microM), is dependent on both ATP (Km = 26 microM) and either Mg2+ or Mn2+ which half-maximally activate Ca2+ pumping at 0.35 mM and 0.32 mM, respectively, and shows similar specificity for Sr2+ and Ba2+ which half-maximally inhibit Ca2+ transport at 50 microM and 1.5 mM, respectively. In contrast to the neural plasma membrane pump, the intracellular Ca2+ pump displays approximately 40-fold higher sensitivity to La3+ (IC50 = 5 microM) and an apparent 400-fold lower sensitivity to VO4(3-) (IC50 = 185 microM), although the inhibitory effectiveness of VO4(3-) is increased 37-fold by a 15-min preincubation of the permeabilized cells with VO4(3-) in the absence of ATP (apparent IC50 = 5 microM). In further contrast to the neural plasma membrane Ca2+ pump, the intracellular pump within N1E-115 cells is stimulated more than 20-fold by oxalate (giving prolonged linear Ca2+ accumulation), is resistant to low saponin concentrations, and is not modified by calmodulin even after extensive treatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and/or calmodulin antagonist drugs. However, calmidazolium is effective in inhibiting the intracellular Ca2+ pump with an IC50 of approximately 2 microM.
منابع مشابه
Intracellular calcium release in N1E-115 neuroblastoma cells is mediated by the M1 muscarinic receptor subtype and is antagonized by McN-A-343.
Experiments using muscarinic receptor antagonists were done to determine which muscarinic receptor subtypes(s) mediate carbachol-evoked calcium release in N1E-115 cells. McN-A-343 and a new analog, (+/-)BN228, were weak antagonists and neither compound caused release on its own. The rank order of potency was 4-DAMP greater than pirenzepine greater than AFDX116 greater than (+/-)BN228 and McN-A-...
متن کاملIntracellular Ca2+ concentration in the N1E-115 neuronal cell line and its use for peripheric nerve regeneration.
Entubulation repair of peripheral nerve injuries has a lengthy history. Several experimental and clinical studies have explored the effectiveness of many biodegradable and non-degradable tubes with or without addition of molecules and cells. The main objective of the present study was to develop an economical and also an easy way for culturing a neural cell line which is capable of growing, dif...
متن کاملRegulation of intracellular calcium in N1E-115 neuroblastoma cells: the role of Na(+)/Ca(2+) exchange.
In fura 2-loaded N1E-115 cells, regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) following a Ca(2+) load induced by 1 microM thapsigargin and 10 microM carbonylcyanide p-trifluoromethyoxyphenylhydrazone (FCCP) was Na(+) dependent and inhibited by 5 mM Ni(2+). In cells with normal intracellular Na(+) concentration ([Na(+)](i)), removal of bath Na(+), which should result in reversal...
متن کاملRegulation of intracellular calcium in N1E-115 neuroblastoma cells: the role of Na /Ca exchange
Kopper, Kara L., and Joseph S. Adorante. Regulation of intracellular calcium in N1E-115 neuroblastoma cells: the role of Na /Ca2 exchange. Am J Physiol Cell Physiol 282: C1000–C1008, 2002; 10.1152/ajpcell.00182.2001.—In fura 2-loaded N1E-115 cells, regulation of intracellular Ca2 concentration ([Ca2 ]i) following a Ca2 load induced by 1 M thapsigargin and 10 M carbonylcyanide p-trifluoromethyox...
متن کاملExpressional down-regulation of neuronal-type nitric oxide synthase I by glucocorticoids in N1E-115 neuroblastoma cells.
Neuronal-type nitric oxide synthase (NOS I) is involved in ischemia-induced brain damage, and glucocorticoids have been reported to protect from brain damage. This prompted us to investigate if the activity or expression of NOS I was influenced by glucocorticoids. We used the murine neuroblastoma cell line N1E-115 as our experimental model. Short-term incubation (30 min) of the N1E-115 cells wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 260 16 شماره
صفحات -
تاریخ انتشار 1985